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Data Structure Optimization for
Power-Efficient IP Lookup Architectures
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Abstract—Power consumption has become a limiting factor in designing next generation network routers. Recent observation
shows that IP lookup engines dominate the power consumption of core routers. Previous work on reducing power consumption
of routers mainly focused on network- and system- level optimizations. This paper represents the first thorough study on the data
structure optimization for lowering the power consumption in static random access memory (SRAM) -based IP lookup engines.
Three different SRAM-based IP lookup architectures are discussed: non-pipelined, simple pipelined, and memory-balanced
pipelined architectures. For each architecture, we formulate the problem of power minimization by revisiting the time-space
trade-off in multi-bit tries. Two distinct multi-bit trie algorithms are investigated: the expanded trie and the tree bitmap trie, which
are widely used in SRAM-based IP lookup solutions. A theoretical framework is proposed to determine the optimal strides for
building a multi-bit trie so that the worst-case power consumption of the IP lookup architecture is minimized. Experiments using
real-life routing tables including both IPv4 and IPv6 data sets demonstrate that, careful selection of strides in building the multi-bit
tries can reduce the power consumption dramatically. We believe our methodology can be applied to other variants of multi-bit
tries and can help designing more power-efficient SRAM-based IP lookup architectures.

Index Terms—IP lookup, data structure, power-efficient, pipeline, SRAM.
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1 INTRODUCTION

THE primary function of network routers is to
forward packets based on the results of IP lookup,

which retrieves the next-hop information by matching
the destination IP address of a packet to the entries in
a routing table. As the network traffic keeps growing
rapidly, IP lookup has become a major performance
bottleneck for network routers [1], [2]. For example,
current backbone link rates have been pushed to-
wards 100 Gbps rate [3], which requires a throughput
of 312.5 million packets per second (MPPS) for min-
imum size (40 bytes) packets. Meanwhile, as routers
achieve aggregate throughputs of trillions of bits per
second, power consumption by lookup engines be-
comes an increasingly critical concern in core router
design [4], [5]. Some recent investigations [6], [7] show
that power dissipation has become the major limiting
factor and predicts that expensive liquid cooling may
be needed in next generation core routers. Several
recent work proposes various system- and network-
level optimizations for reducing the power consump-
tion of routers [7], [8]. But they remain insufficient to
address the challenge of high power consumption for
core routers in the worst case (i.e. full-load traffic).

Recent analysis by researchers from Bell labs [6]
reveals that, almost two thirds of power dissipation
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inside a core router is due to IP lookup engines. To
meet the high throughput requirement in backbone,
it becomes a must to perform IP lookup in hardware.
Current hardware-based IP lookup solutions can be
divided mainly into two categories: Ternary Content
Addressable Memory (TCAM)-based and Static Ran-
dom Access Memory (SRAM)-based. TCAM-based
solutions, where a single clock cycle is sufficient to
perform an IP lookup, are widely used in today’s edge
routers. However, as a result of the massive paral-
lelism inherent in their architecture, TCAMs do not
scale well in terms of clock rate, power consumption,
and chip density [2]. It has been estimated that the
power consumption per bit of TCAMs is on the order
of 3 micro-Watts, which is 150 times more than for
SRAM [4]. As a result, today’s core routers such as
Juniper’s T1600 [9] and Cisco’s CRS-3 [10] routers
implement trie-based IP lookup algorithms in SRAM-
based hardware architectures.

Most SRAM-based algorithmic solutions are based
on trie [11], whose search process can be pipelined to
achieve a high throughput of one packet per clock cy-
cle [2]. SRAM-based pipeline architectures have been
known as an attractive solution for IP lookup engines
in next generation routers [2], [12]. However, SRAM-
based IP lookup engines still suffer from high power
consumption, due to the large number of accesses
on large memory [14]. Hence the main focus of this
paper is on designing power-efficient SRAM-based IP
lookup engines.

We revisit the classical IP lookup data structure:
the trie. Various multi-bit tries have been proposed
to reduce the number of memory accesses for trie-
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based algorithms [1], [17], [18]. They exhibit trade-off
between the memory size (space) and the number of
memory accesses (time). Either large memory size or a
large number of memory accesses leads to high power
consumption. It is thus worthwhile to revisit such
time-space trade-off from the power/energy point of
view. The main contributions of this paper include a
thorough study on the impact of the data structure
tuning of a multi-bit trie on the power consumption
of SRAM-based IP lookup architectures. The tuning
knob is the strides used to build a multi-bit trie. We
study two existing multi-bit trie algorithms includ-
ing the expanded trie [19] and the tree bitmap trie
[1], which are among the most well-known multi-
bit trie algorithms that have been used in today’s
core routers. Three different IP lookup architectures
are discussed: non-pipelined, simple pipelined, and
memory-balanced pipelined architectures. A theoret-
ical framework is proposed to determine the opti-
mal strides for building a multi-bit trie so that the
worst-case power consumption of the architecture is
minimized. Both IPv4 and IPv6 backbone routing
tables are evaluated in our experiments to verify the
effectiveness of our solution.

The rest of the paper is organized as follows. Section
2 gives a overview of trie-based IP lookup algorithms
and introduces SRAM-based IP lookup architectures.
Section 3 defines and formulates the problems of
power minimization. Section 4 details our solutions.
Section 5 presents the experimental results. Section
6 reviews the recent efforts on reducing power con-
sumption of routers as well as of IP lookup engines.
Section 7 concludes the paper.

2 BACKGROUND

2.1 Trie-based IP lookup
The entries in a routing table are specified using
prefixes. IP lookup is to find the longest matching
prefix for an input IP address. The most common
data structure used in algorithmic solutions for IP
lookup is some form of trie [11]. A basic binary trie
is a binary tree, where a prefix is represented by a
node. The value of the prefix corresponds to the path
from the root of the tree to the node representing the
prefix. The branching decisions are made based on
the consecutive bits in the prefix. A trie is called a
uni-bit trie if only one bit at a time is used to make
branching decisions. Figure 1 shows the uni-bit trie
for the prefix entries in Table 1. Figure 1(a) gives
a classical representation of the uni-bit trie, while
Figure 1(b) illustrates the actual data structure of a
uni-bit trie. Each trie node contains both the pointer
to the child nodes and the pointer to the next-hop
information associated with the represented prefix.
By using the leaf-pushing [19] technique, each node
needs only one field: either the pointer to the next-
hop address or the pointer to the child nodes.

TABLE 1
Example Prefix Set

P1 0*
P2 1*
P3 10*
P4 111*
P5 1000*
P6 11001*
P7 100000*
P8 1000000*

(a) Uni-bit trie

(b) Corresponding data structure

Fig. 1. A uni-bit trie and its data structure

Given a uni-bit trie, longest prefix matching (LPM)
is performed by traversing the trie according to the
bits in the IP address. When a leaf is reached, the
longest matching prefix along the traversed path is
returned. The time to look up a uni-bit trie is up to the
maximum prefix length. In the worst case, it takes 32
and 128 memory accesses to find the longest matching
prefix for IPv4 (32-bit) and IPv6 (128-bit), respectively.

The search speed can be improved by using mul-
tiple bits in one scan when traversing the trie. This
results in a multi-bit trie. The number of bits scanned
at a time is called the Stride. There are two versions
of multi-bit tries: fixed-stride and variable-stride tries.
The nodes at the same level have the same stride
in a fixed-stride trie, while they may have different
strides in a variable-stride trie. Fixed-stride tries are
more desirable for hardware implementation due to
their simplicity and ease of route update [1], [19].
Hence this paper considers only the fixed-stride tries.

A naive implementation of a multi-bit trie is the
Expanded trie [19]. Figure 2 shows the fixed-stride
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expanded trie for the prefix entries in Table 1 with the
strides of 2,3,2. That is, the first level of the trie uses
two bits, the second uses three bits, and the third uses
two bits. Figures 2(a) and 2(b) show the expanded
tries without and with leaf-pushing, respectively.

(a) Without leaf-pushing (b) With leaf-pushing

Fig. 2. Expanded trie (fixed-stride)

Expanded tries are not memory-efficient. Various
optimization schemes have been proposed for mem-
ory reduction [1], [17]. The most well-known (and
successful) one is the tree bitmap (TBM) algorithm [1]
which reduces memory requirement dramatically by
employing a clever encoding of a fixed-stride multi-
bit trie. The TBM algorithm uses a pair of bitmaps
for each node in a TBM trie. One bitmap (named
internal bitmap, denoted as IBM) represents the next-
hop information associated with the internally stored
prefixes inside the given multi-bit trie node. The other
bitmap (named external bitmap, denoted as EBM)
represents the children that are actually present. For
a TBM node using a stride of s, its IBM has 2s−1 bits
and its EBM has 2s bits. If the TBM node is an end
node (whose children are all leaf nodes), its EBM can
be eliminated and its IBM is expanded to 2(s+1) − 1
bits. Children of a node are stored in contiguous
memory locations, which allows each node to use
just a single child pointer. The memory address of
each child node can be calculated as an offset from
the single pointer. Similarly, another single pointer is
used to reference the next-hop information associated
with the prefixes inside a node. Figure 3 shows the
TBM trie corresponding to the prefix entries in Table
1 with the strides of 2,3,2. Figure 3(a) shows how a
TBM is built based on the reference uni-bit trie. There
are four TBM nodes, denoted as N1, N2, N3 and N4,
where N3 and N4 are end nodes. Figure 3(b) shows
the corresponding data structure of the TBM trie.

2.2 SRAM-based IP Lookup Architectures
Trie-based algorithmic IP lookup solutions can be
implemented in SRAM-based hardware architectures

(a) Building a TBM

(b) Corresponding data structure

Fig. 3. A TBM and the corresponding data structure

to achieve high performance. A traditional method
is to store the entire trie into a single SRAM chip.
It needs to access the single memory multiple times
for looking up an IP address. Thus the worst-case
throughput for searching a K-level trie is 1/K packets
per clock cycle, given that each SRAM access takes
one clock cycle.

Pipelining can dramatically improve the through-
put of trie-based solutions. A straightforward way to
pipeline a trie is to assign each trie level to a separate
stage, so that a lookup request can be issued every
clock cycle [20], [21]. However, such a simple scheme
results in unbalanced memory distribution across the
pipeline stages. This has been identified as a major
issue for SRAM-based pipeline architectures [22], [23],
[24]. In an unbalanced pipeline, more time is needed
to access the larger local memory. This leads to a
reduction in the global clock rate.

Various memory-balanced pipeline architectures
have been proposed recently [2], [22], [25]. But most of
them balance the memory distribution across stages at
the cost of lowering the throughput, due to their non-
linear architectures. Our previous work [2] proposes a
fine-grained node-to-stage mapping scheme for linear
pipeline architectures. It allows the two nodes on the
same level to be mapped onto different stages. This
is enabled by storing in each node the distance to the
stage where its child nodes reside. Balanced memory
distribution across pipeline stages is achieved, while a
throughput of one packet per clock cycle is sustained.

Figure 4 depicts the examples of the above three
SRAM-based IP lookup architectures. Each of them
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has its pros and cons. The non-pipelined architecture
is the easiest to implement and to support fast route
update, but with the lowest throughput. The memory-
balanced linear pipelined architecture achieves the
highest throughput with the highest complexity that
leads to the difficulty in handling route updates.
This paper does not aim to make any comparison
between the three architectures. We want to see how
the data structure optimization will impact the power
efficiency over different architectures.

Fig. 4. (a) Non-pipelined (NP), (b) Simple pipelined
(SP), and (c) Memory-balanced pipelined (MBP) archi-
tectures

3 PROBLEM FORMULATION

3.1 Notations
We have following notations:

• K: The number of trie levels.
• s: A stride.
• SK : The strides to build a K-level trie. SK =

{s0, s1, . . . , sK−1}, where si is the stride for build-
ing the i-th level of the trie, i = 0, 1, . . . ,K − 1.

• H : The number of stages in a pipeline.
• pi: The power dissipation of the i-th stage in the

pipeline, i = 1, 2, . . . , H .
• Nw: The number of memory words.
• Nw[i]: The number of words on the i-th level of

the trie, i = 0, 1, . . . ,K − 1.
• Ww: The width of a memory word, in terms of

the number of bits.
• Ww[i]: The word width for the nodes on the i-th

level of the trie, i = 0, 1, . . . ,K − 1.
• Pm(Nw,Ww): The power dissipation of the mem-

ory as a function of Nw and Ww.
• M(SK): The memory size of the trie constructed

using the strides SK .
• c: A constant number.

When building a K-level trie, Nw and Ww may be
determined by the strides SK . Hence they can be
represented as Nw(SK) and Ww(SK), respectively. But
for clearness, we still use the notation of Nw and
Ww which implicitly mean Nw(SK) and Ww(SK),
respectively, in the rest of the paper.

3.2 Power Modeling
3.2.1 Assumption
The power consumption of a SRAM-based architec-
ture includes both the power dissipation of the mem-
ory and of the logic. Several previous work [15], [16],

[25] has shown that the logic dissipates much less
power than the memory in a memory-intensive IP
lookup architecture. Hence the main focus of this
paper is on reducing the power consumption caused
by memory accesses. The power dissipation due to
the logic will be ignored in the rest of the paper.

3.2.2 Power Consumption Metrics
We consider two metrics to evaluate the power con-
sumption of an IP lookup architecture:

1) Power dissipation of the hardware architecture.
Denoted as P1.

2) Maximum power consumed by an IP packet
going through the architecture. Denoted as P2.

The relationship between P1 and P2 is different for
different architectures:

In a non-pipelined architecture containing a K-level
trie, an IP lookup may need access the architecture for
K times. Thus P2 = K · P1. As K ≥ 1, P1 ≤ P2.

In a simple pipelined architecture, H = K. Both P1

and P2 are equal to the sum of power dissipation of
all stages. That is, P1 = P2 =

∑H
i=1 pi.

In a memory-balanced pipelined architecture, H ≥
K. As the memory is balanced across the stages, the
power dissipation of any stage is the same, i.e. pi = p,
i = 1, 2, . . . , H . P1 = p ·H and P2 = p ·K. P1 ≥ P2.

3.2.3 Power Function of SRAM
We need to figure out the power function of the SRAM
with respect to its parameters. The only memory-
related parameters available from the trie data struc-
ture are the number of memory words (Nw) and the
word width (Ww). There are some published work on
comprehensive power models of SRAM [26], [27], [28].
But these detailed analytic models do not give the
explicit relationship between the power consumption
and (Nw, Ww). An earlier version of our work [29]
considered Nw as the only variable and attempted to
obtain the power function of SRAM with respect to
the memory size (which is Nw · Ww) using the fixed
word width (Ww = 64 bits). CACTI tool [28] (version
5.3) was used to evaluate both the dynamic and the
leakage power consumption of SRAMs of different
sizes. Then the function parameters were obtained
through curve fitting (“black box” modeling). It was
revealed that, when the word width was constant,
the dynamic and the leakage power of SRAM were
sublinear and linear to the memory size, respectively.

We employ the same methodology as [29] to profile
the power function of SRAM with respect to (Nw,
Ww). As there are two instead of one variables, we
have to use surface fitting instead of curve fitting.
As shown in Figure 5(b), the leakage power is linear
to both Nw and Ww. However, while Figure 5(a)
shows that the dynamic power of SRAM is not linear
to either Nw or Ww, it is difficult to find a good
fitting function. Hence, we leave the power function
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of SRAM as a black box, denoted as Pm(Nw,Ww). We
link the CACTI module [28] into our algorithms. The
CACTI module receives the values of Nw and Ww, and
outputs the power dissipation of the SRAM. Other
CACTI parameters are fixed, as listed in Table 2.
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Fig. 5. Power of SRAM as a function of (Nw, Ww)

TABLE 2
Default CACTI parameters

Name Value
Number of Banks 1

Number of Read/Write Ports 1
Number of Read Ports 0
Number of Write Ports 0

Technology Node 65 nm
Temperature 360 K

Transistor type ITRS-HP
Interconnect projection type Conservative

Type of wire Semi-global

Note that Pm(.) is not a continuous function to Nw.
This is because the number of words must be power
of 2 in a physical memory whose parameters are the
inputs to the SRAM power function, while Nw mainly
refers to the number of words consumed by the data
structure of the trie. For example, in case of fixed Ww,
Pm(513,Ww) = Pm(1023,Ww), because either Nw =
513 or Nw = 1023 words need to be stored in a 1024-
word memory.

3.3 Problem of Power Minimization
We aim to minimize the power consumption of
SRAM-based IP lookup architectures by choosing the
optimal strides in building a fixed-stride multi-bit trie.
Given a set of prefixes and a trie algorithm, we need
to determine the number of strides (K) and the value
of each stride (SK). The problem can be formulated
as (1) and (2):

min
K

min
SK

P1 (1)

min
K

min
SK

P2 (2)

The problems can be detailed for the three differ-
ent architectures including: the non-pipelined (NP),
the simple pipelined (SP), and the memory-balanced
pipelined (MBP) architectures.

3.3.1 Problem for NP Architecture
In a non-pipelined (NP) architecture, P1=Pm(Nw,Ww)
and P2=K · P1. Then (1) and (2) can be rewritten as:

min
K

min
SK

P1 = min
K

min
SK

Pm(Nw,Ww) (3)

min
K

min
SK

P2 = min
K

min
SK

K · Pm(Nw,Ww)

= min
K

K ·min
SK

Pm(Nw,Ww) (4)

The basic problem to be solved, which is common
to both (3) and (4), is

min
SK

Pm(Nw,Ww) (5)

which is to identify the optimal strides in building a
K-level trie so that the power dissipation of the result-
ing memory is minimized. Once this basic problem is
solved, we can iterate all possible values of K to find
out the optimal K.

Note that in a NP architecture, the nodes on all
levels of a trie are stored in a single memory. Thus
the word width of the memory has to be identical
and should be determined by the largest word width
across all levels of the trie. In other words,

Ww =
K−1
max
i=0

Ww[i]. (6)

3.3.2 Problem for SP Architecture
In a simple pipelined (SP) architecture, P1 = P2 =∑K

i=1 pi where pi = Pm(Nw[i],Ww[i]), i = 0, 1, . . . ,K−
1. Then (1) and (2) can be rewritten as (7):

min
K

min
SK

P1 = min
K

min
SK

P2 =

min
K

min
SK

K∑

i=1

Pm(Nw[i],Ww[i]) (7)

The basic problem to be solved is

min
SK

K∑

i=1

Pm(Nw[i],Ww[i]) (8)
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which is to identify the optimal strides for building
a K-level trie so that after each level of the trie is
mapped to a separate memory block, the sum of
the power dissipation of the K memory blocks is
minimized. Once this basic problem is solved, we can
iterate all possible values of K to get the optimal K.

3.3.3 Problem for MBP Architecture
In a memory-balanced pipelined (MBP) architecture,
P1 = p · H and P2 = p · K. Since the memory
distribution across the pipeline stages is balanced,
p = Pm(Nw

H ,Ww). As H needs to be larger than K,
we have H = K +ΔH , where ΔH denotes the extra
number of stages added upon K. Then (1) and (2) can
be rewritten as

min
K

min
SK

P1 = min
K

min
SK

Pm(
Nw

H
,Ww) · (K +ΔH)

= min
K

(K +ΔH) ·min
SK

Pm(
Nw

H
,Ww) (9)

min
K

min
SK

P2 = min
K

min
SK

Pm(
Nw

H
,Ww) ·K

= min
K

K ·min
SK

Pm(
Nw

H
,Ww) (10)

The basic problem to be solved, which is common
to both (9) and (10), is

min
SK

Pm(
Nw

H
,Ww) (11)

which is to identify the optimal strides for building a
K-level trie so that after the trie nodes are uniformly
distributed across H stages, the power dissipation of
each stage is minimized. Once this basic problem is
solved, we can iterate all possible values of K to
obtain the optimal K.

Note that in a memory-balanced pipelined archi-
tecture, the nodes on different levels of a trie can be
stored in a same memory. The only exception is the
root node. Thus the word width in all but the first
stages has to be identical to be

Ww =
K−1
max
i=1

Ww[i]. (12)

4 SOLUTION TECHNIQUES
According to the discussion in Section 3.3, there are
three basic problems to be solved, which are listed as
(5), (8) and (11). Each problem corresponds to one of
the three architectures. In this section, we solve the
three problems for two variants of multi-bit tries: the
expanded trie and the tree bitmap (TBM) trie.

Lemma 1: When the word width (Ww) is constant,
the power dissipation of a single SRAM is minimized
if and only if its memory size (M ) is minimized.

Proof: M = Nw · Ww. When Ww is constant i.e.
Ww = c, minM ⇔ minNw. On the other hand,
the power dissipation of the SRAM i.e. Pm(Nw,Ww),
becomes Pm(Nw, c). According to the SRAM power
function, minPm(Nw, c) ⇔ minNw.

Thus, minPm(Nw, c) ⇔ minM .

4.1 Power Minimization for Expanded Trie

In an expanded trie as shown in Figure 2, strides only
affects Nw, while Ww is independent with the strides.
More precisely, an expanded trie node using a stride
of s contains 2s words. On the other hand,

Ww = Ww[i] = c, i = 0, 1, . . . ,K − 1, (13)

where c is a constant.

4.1.1 Solving the Problem for NP Architecture
Based on (13) and Lemma 1, the problem (5) can be
reduced to

min
SK

M(SK) (14)

which is to find the optimal strides for building a
minimum-memory K-level expanded trie. This prob-
lem has been well studied by Srinivasan and Varghese
[19], and Sahni and Kim [18]. Srinivasan and Varghese
developed a dynamic programming solution to mini-
mize the memory requirement of a K-level expanded
trie. Sahni and Kim made further improvement to
reduce the complexity of the algorithms. Since our so-
lutions are based on their work, we briefly reproduce
the idea of the dynamic programming solution pro-
posed in [19]. First, we have the following notations
in addition to those defined in Section 3.1:

• O: The uni-bit trie for the given set of prefixes.
• E: The K-level expanded trie for the same set of

prefixes.
• L: The maximum prefix length. Note that the

number of levels of O equals L.
• nn(i): The number of nodes on Level i of O, i =

0, 1, . . . , L− 1.
Each level of E is called an expansion level, as it covers
multiple levels of O. Consider E uses the strides of
SK = {s0, s1, . . . , sK−1}. Level 0 of E covers Levels
0,. . .,s0 − 1 of O. Level j of E, j = 1, 2, . . . ,K − 1,
covers Levels

∑j−1
q=0 sq ,. . .,

∑j
q=0 sq − 1 of O.

Let T (j, r) be the optimal cost (i.e. memory re-
quirement) to cover Levels 0 through j of O using
r expansion levels. Then T (L − 1,K) is the cost of
the best K-level expanded trie for the given prefix
set. The following dynamic programming recurrence
is obtained in [19]:

T (j, r) = minm∈[r−2,j−1]{T (m, r − 1)+

nn(m+ 1) ∗ expCost(j −m)}
T (j, 1) = expCost(j + 1)

(15)

where expCost(s) = 2s is the expansion cost (i.e.
memory requirement in terms of the number of
words) of using the stride of value s.

The complexity of the dynamic programming al-
gorithm is O(KL2). Since the maximum value of K
can be L, the complexity of the algorithms to solve
the problems (3) and (4) for the expanded trie is∑L

K=1 O(KL2) = O(L4).
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4.1.2 Solving the Problem for SP Architecture
As the word width is constant in an expanded trie,
i.e. Ww = c, the problem (8) can be reduced to

min
SK

K∑

i=1

Pm(Nw[i]) (16)

Note that this problem is not equal to the problem of

min
SK

K∑

i=1

Nw[i] = min
SK

Nw ⇔ min
SK

M(SK).

This is because the power dissipation of SRAM is not
linear to Nw, as shown in Figure 5(a).

To solve (16), we use the similar dynamic program-
ming recurrence as (15) but with a different expansion
cost function expCost(s) for stride s. By integrating
the power function of SRAM, the new expansion cost
function is

expCost(s) = Pm(2s, c)

The complexity of the dynamic programming algo-
rithm is O(KL2). Thus the complexity of the algo-
rithm to solve the problem (7) for the expanded trie
is

∑L
K=1 O(KL2) = O(L4).

4.1.3 Solving the Problem for MBP Architecture
As Ww is constant in an expanded trie, the problem
(11) can be reduced to (17) which is equal to (14):

min
SK

Pm(
Nw

H
) ⇔ min

SK

Nw ⇔ min
SK

M(SK) (17)

Thus the solution for MBP architecture is same as that
for NP architecture. But this does not mean that the
results (i.e. the optimal K and SK) are the same for the
two architectures. The complexity of the algorithms to
solve (9) and (10) for the expanded trie is O(L4).

4.2 Power Minimization for TBM Trie
As far as we know, there is no previous work on
identifying the optimal strides in building a TBM trie
to achieve either memory or power minimization. In
a TBM trie (shown in Figure 3), each node is stored as
a word. Each word contains the bitmaps whose size
depends on the stride value s. There are two kinds of
nodes in a TBM trie: internal nodes and end nodes.
Both kinds of nodes have the same word width which
can be represented as a function of s:

Ww(s) = 2(s+1) + c, (18)

where c is a constant.

4.2.1 Solving the Problem for NP Architecture
As discussed in Section 3.3.1, all nodes in a non-
pipelined (NP) architecture have to use the same word
width whose value is determined by the largest node
in the TBM trie. Based on (18), we can rewrite (6) as:

Ww = maxK−1
i=0 Ww[i] = maxK−1

i=0 2(si+1) + c

= 2(maxK−1
i=0

si+1) + c.
(19)

So the word width is determined by the largest stride.
Since the word width depends on the strides, Lemma
1 is no longer applicable directly to the TBM trie.
Moreover, as the largest stride is unknown during the
course of building the trie, it is difficult to evaluate
the expansion cost if we use the similar dynamic pro-
gramming recurrence as in previous sections. To solve
the problem, we add a stride bound (B) as the upper
limit of any stride when building a K-level TBM trie.
In other words, we build a K-level TBM trie whose
strides are capped by B, i.e. maxK−1

i=0 si ≤ B. Let SK,B

denote the bounded strides: {s0, s1, . . . , sK−1} where
si ≤ B, i = 0, 1, . . . ,K − 1. Then we transform the
problem (5) to be

min
B

min
SK,B

Pm(Nw,Ww(B)) (20)

Now the basic problem to be solved becomes

min
SK,B

Pm(Nw,Ww(B)) (21)

Once this basic problem is solved, we can iterate all
possible values of B to get the optimal B and the
corresponding SK,B . Given a B, Ww is fixed to be
2(B+1) + c. Thus similar to the case for the expanded
trie (Section 4.1.1), we can reduce the problem (21)
to be the problem of minSK,B

M(SK,B). Then we can
solve it by using the dynamic programming recur-
rence similar to (15). But as the strides are capped by
B, we need to revise it to be

T (j, r) = minm∈[max(r−2,j−B),j−1]{T (m, r − 1)+

nn(m+ 1) ∗ expCost(B)}
T (j, 1) = expCost(B), j < B

T (j, 1) = +∞, j ≥ B
(22)

where expCost(s) = Ww(s) is the expansion cost (i.e.
memory requirement in terms of the number of bits)
of using the stride s. We employ T (j, 1) = +∞, j ≥ B
to cap s0. The complexity of the dynamic program-
ming algorithm is O(KL2). As the maximum value of
B can be L, the complexity of the algorithm to solve
the problem (20) is

∑L
B=1 O(KL2) = O(KL3). The

complexity of the algorithms to solve the problems (3)
and (4) for the TBM trie is

∑L
K=1 O(KL3) = O(L5).

Note that, though minSK,B
Pm(Nw,Ww(B)) ⇔

minSK,B
M(SK,B), the problem (20) is not equal to

minB minSK,B
M(SK,B). This is because M = Nw ·Ww

but Pm(Nw,Ww) is not linear to M . The B that results
in the minimum memory does not necessarily lead to
the minimum power consumption.

4.2.2 Solving the Problem for SP Architecture
In a simple pipelined (SP) architecture, the trie nodes
on the same level are mapped to the same stage. Since
a TBM trie is a fixed-stride trie, the trie nodes on the
same level use the same stride. Thus the words stored
in a same stage have the same word width. On the

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



8

other hand, different stages can use different strides.
Thus there is no need for the stride bound.

For the case of expanded trie (Section 4.1.2), Nw is
the only variable. Now for the TBM trie, we need to
consider both Nw and Ww. We propose the following
dynamic programming recurrence to solve the prob-
lem (8) for the TBM trie:

T (j, r) = minm∈[r−2,j−1]{T (m, r − 1)+

Pm(nn(m+ 1), expCost(j −m))}
T (j, 1) = Pm(nn(0), expCost(j + 1))

(23)

The complexity of the dynamic programming al-
gorithm is O(KL2). Thus the complexity of the al-
gorithm to solve the problem (7) for the TBM trie is∑L

K=1 O(KL2) = O(L4).

4.2.3 Solving the Problem for MBP Architecture

As discussed in Section 3.3.3, the trie nodes on dif-
ferent levels may be mapped to the same stage in a
memory-balanced pipelined (MBP) architecture. The
memory words in all stages except the first stage must
use the same word width. Similar to the discussion
for a non-pipelined (NP) architecture (Section 4.2.1),
the word width in those stages is determined by
the largest stride among the strides (excluding s0)
of the TBM trie. But the largest stride is unknown
until the trie is constructed. Like the case for the
NP architecture, we can solve the problem by adding
the stride bound (B). But we do not need to cap
the first stride (s0) in the MBP architecture. Let S′

K,B

denote the bounded strides: {s0, s1, . . . , sK−1} where
si ≤ B, i = 1, 2, . . . ,K − 1. Then the problem (11) is
transformed to be

min
B

min
S′
K,B

Pm(
Nw

H
,Ww(B)) (24)

The basic problem to be solved becomes

min
S′
K,B

Pm(
Nw

H
,Ww(B)) (25)

Given a B, Ww is fixed to be 2(B+1) + c. Thus similar
to the case for the expanded trie (Section 4.1.3), we
can reduce the problem (25) to be the problem of
minS′

K,B
M(S′

K,B). The solution is very similar to that
for the NP architecture (Section 4.2.1), with the only
difference is that the stride bound for s0 is removed
here. So we have:

T (j, r) = minm∈[max(r−2,j−B),j−1]{T (m, r − 1)+

nn(m+ 1) ∗ expCost(B)}
T (j, 1) = expCost(B)

(26)
Same as the analysis in Section 4.2.1, the complexity

of the algorithms to solve the problems (9) and (10)
for the TBM trie is O(L5).

5 EXPERIMENTAL RESULTS

We conduct the experiments for the three SRAM-
based IP lookup architectures. For each architecture,
both expanded trie and tree bitmap (TBM) trie are
evaluated. The stride selection includes the number of
strides (K) and the values of strides (SK). We’d like
to see which K and SK lead to the best performance
for each architecture with each type of trie. Three
performance metrics are considered:

• Memory requirement, denoted as Mem;
• Power dissipation of the architecture, i.e. P1 as

defined in Section 3.2.2;
• Worst-case power consumption by an IP lookup,

i.e. P2 as defined in Section 3.2.2.

5.1 Data Set
We use 17 real-life backbone routing tables from the
Routing Information Service (RIS) [30]. Most of the
routing tables contain both IPv4 and IPv6 prefixes.
We divide each routing table into a IPv4 prefix set
and a IPv6 prefix set. Table 3 lists their characteristics
including the numbers of unique IPv4 and IPv6 pre-
fixes. The empty prefix sets are not used. Hence we
have 17 IPv4 prefix sets and 14 IPv6 prefix sets. Note
that the routing tables rrc02, rrc08 and rrc09 are much
smaller than others, since the collection of these three
data sets ended on October 2008, September 2004 and
February 2004, respectively [30].

TABLE 3
Representative Routing Tables

Routing Site Date & Time # of IPv4 # of IPv6
table prefixes prefixes
rrc00 Amsterdam 20120401.0000 435381 9078
rrc01 London 20120401.0759 405196 8684
rrc02 Paris 20081001.0759 272504 1373
rrc03 Amsterdam 20120401.0000 401302 8696
rrc04 Geneva 20120401.0759 410907 6391
rrc05 Vienna 20120401.0000 404267 8601
rrc06 Otemachi 20111001.0759 368295 0
rrc07 Stockholm 20120401.0000 407698 8374
rrc08 San Jose 20040902.0800 83509 0
rrc09 Zurich 20040204.0000 133035 0
rrc10 Milan 20120401.0000 403500 8462
rrc11 New York 20120401.0759 404834 8492
rrc12 Frankfurt 20120401.0759 409116 8708
rrc13 Moscow 20120401.0759 412170 8684
rrc14 Palo Alto 20120401.0000 408422 8551
rrc15 Sao Paulo 20120401.0759 421557 8425
rrc16 Miami 20120315.0759 407634 7826

5.2 Results for NP Architecture
We increase K from 2 to the maximum prefix length
(L) to assess the impact of K on the performance
of the non-pipelined (NP) architecture. The results
for each K are based on the optimal SK (obtained
through our solutions discussed in Section 4).

Figure 6 shows the results for IPv4 prefix sets where
L = 32 and K = 4, 5, . . . , 32. K = 2, 3 lead to much
worse performance than the rest of Ks. Hence the
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results for K = 2, 3 are not included in the figure for
better visibility of other results. We observe that the
results for the expanded trie (Figure 6(a)) and for the
TBM trie (Figure 6(b)) have the similar trends:

1) Initially when K is increased from a small value,
all performance metrics are getting better.

2) When K is increased from around 10 to around
25, Mem and P1 are flat, which indicates achiev-
ing the maximum optimization. As P2 = K · P1,
we see the linear increase of P2. Overall TBM
tries require much less memory and power than
expanded tries.

3) When K approaches L, Mem is closer to the
memory requirement of a uni-bit trie. No much
optimization can be done for SK . Hence we see
the increase of Mem and accordingly P1 and P2.
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Fig. 6. IPv4 Results for NP Architecture

After identifying the optimal K, we obtain the
corresponding optimal SK in Table 4. The prefix sets
rrc01 and rrc13 have the same results, and are listed
in the same row. Similarly, rrc05, rrc10, rrc11, rrc12,
rrc14 and rrc16 are listed in the same row as they
share the same results. According to Table 4, we have
the following findings:

1) For the expanded trie, the optimal strides that
lead to the minimum memory requirement are

different from those that lead to the minimum
power consumption;

2) For the TBM trie, the optimal strides for large
prefix sets are a series of strides of 4, which
lead to both minimum memory requirement and
power consumption;

3) The optimal strides of the expanded trie have a
larger variation than those of the TBM trie.

4) For large prefix sets, the optimal strides for P1

are same as those for P2;
The second and the third findings can be explained as
follows. When a TBM trie is stored in the NP archi-
tecture, the memory word width is determined by the
largest stride. A TBM trie node with a small stride has
to be stored in a word of the same width as a node
with a larger stride. This results in memory wastage
(and accordingly higher power consumption). Thus
the TBM trie prefers strides of uniform value.
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Fig. 7. IPv6 Results for NP Architecture

Figure 7 shows the results using IPv6 prefix sets
where L = 128 and K = 7, 8, . . . , 128. The Y axis is
drawn in the logarithmic scale. Since K = 2, 3, . . . , 6
lead to much worse performance than the rest of Ks,
the results for K = 2, 3, . . . , 6 are not included in the
figure for better visibility of the results. The trends
for the IPv6 results are similar to those for the IPv4
results, except that when K is smaller than 16, the
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TBM trie requires less memory but consumes higher
power than the expanded trie. This may be due to the
large word width in the TBM trie.

We also obtain the optimal SK for IPv6 prefix sets.
But due to space limitation, we do not present all the
results in the paper. Table 5 lists the results for the
largest IPv6 prefix set rrc00 and for the smallest non-
empty IPv6 prefix set rrc02. The findings are similar to
those for IPv4 results except that, the optimal strides
of the TBM trie for minimum memory requirement are
different from those for minimum power consump-
tion, for both the large and the small prefix sets. The
most notable result is that, the optimal strides of the
TBM trie for minimum power consumption for the
large prefix set (rrc00) are a series of strides of 4, which
is same as that for IPv4 prefix sets.

5.3 Results for SP Architecture
Figures 8 and 9 show the IPv4 and IPv6 results, re-
spectively, about the impact of K on the performance
of the simple pipelined (SP) architecture. For IPv4,
L = 32 and K = 4, 5, . . . , 32. For IPv6, L = 128
and K = 7, 8, . . . , 128. The trends of Mem are same
as those for the NP architecture. For P1, the optimal
ranges of K are narrower than those in the NP archi-
tecture. Also P1 = P2 in the SP architecture. Overall
the power consumption of the SP architecture is lower
than that of the NP architecture. In both architectures,
the TBM trie using the optimal K achieves at least 4-
fold reduction in power consumption compared with
the uni-bit trie (K = L).

Table 6 lists the optimal strides for the seventeen
IPv4 prefix sets. Table 7 lists the optimal strides for
the IPv6 prefix sets rrc00 and rrc02. For the expanded
trie, the optimal strides that lead to the minimum
memory requirement are same as those in the NP
architecture. But the optimal strides for minimum
power consumption are different. For the TBM trie,
the optimal strides are no longer of uniform value.
This is because in a SP architecture, each stage can
independently decide its word width based on the
optimal stride for that stage.

5.4 Results for MBP Architecture
In a memory-balanced pipelined (MBP) architecture,
H = K + ΔH . In our experiments, we set ΔH = 1.
Figures 10 and 11 show the IPv4 and IPv6 results,
respectively, about the impact of K on the perfor-
mance. Compared with the results of the previous two
architectures, the trends of Mem are the same while
the trends of P1 are slightly different. P2 is similar to
P1, but not exactly the same. The sawtooth-like trends
for P1 and P2 can be explained as follows. When
K gets larger, the number of words per stage gets
smaller, while the number of stages also gets larger.
But a smaller number of words does not necessarily
result in a smaller memory. For example, both 513 and
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Fig. 8. IPv4 Results for SP Architecture

1023 words need a memory of 1024 words. As a result,
there exist some cases that, with an increasing K, the
power dissipation per stage is not reduced, while the
number of stages is increased.

Table 8 lists the optimal strides for each IPv4 prefix
set. Table 9 lists the optimal strides for IPv6 prefix sets
rrc00 and rrc02. The TBM trie prefers a uniform value
for the strides, which is similar to the findings for the
NP architecture. But the first stride is an exception, as
the word width of the first stage in a MBP architecture
is independent with that in the rest of stages.

6 RELATED WORK

6.1 Greening the Routers
Reducing the power consumption of network routers
has been a topic of significant interest [5], [7], [8],
[31]. Most of the existing work focuses on the system-
and network-level optimizations. Chabarek et al. [7]
enumerate the power demands of two widely used
Cisco routers. The authors further use mixed inte-
ger optimization techniques to determine the optimal
configuration at each router in their sample network
for a given traffic matrix. Nedevschi et al. [8] assume
that the underlying hardware in network equipment
supports sleeping and dynamic voltage and frequency
scaling. The authors propose to shape the traffic into
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Fig. 9. IPv6 Results for SP Architecture

small bursts at edge routers to facilitate sleeping and
rate adaptation. These solutions can not reduce the
worst-case power consumption of routers.

6.2 Power-Efficient IP Lookup Engines
Power-efficient IP lookup engines have been studied
from various aspects. However, to the best of our
knowledge, there is little work done for SRAM-based
IP lookup architectures. Some TCAM-based solutions
[14], [32], [33] propose various schemes to partition
a routing table into several blocks and perform IP
lookup on one of the blocks. Similar ideas can be
applied for SRAM-based multi-pipeline architectures
[13]. These partitioning-based solutions for power-
efficient SRAM-based IP lookup engines do not con-
sider the underlying data structure, and are orthogo-
nal to the solutions proposed in this paper.

Kaxiras et al. [34] propose a SRAM-based approach
called IPStash for power-efficient IP lookup. IPStash
replaces the full associativity of TCAMs with set asso-
ciative SRAMs to reduce power consumption. How-
ever, the set associativity depends on the routing table
size and thus may not be scalable. For large routing
tables, the set associativity is still large, resulting in
low clock rate and high power consumption.

Traffic locality and rate variation have been ex-
ploited for reducing the average power consumption
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Fig. 10. IPv4 Results for MBP Architecture

in IP lookup engines. Caching is employed in [16] to
reduce power consumption, where some trie nodes
are cached to skip the access to the deeper trie levels.
In [35] clock gating is used to turn off the clock of
unneeded processing engines of multi-core network
processors to save dynamic power when there is a low
traffic workload. In [36] a more aggressive approach
of turning off these processing engines is used to
reduce both dynamic and static power consumption.
A finer-grained clock gating scheme is proposed in
[15] to lower the dynamic power consumption of
pipelined IP forwarding engines. Dynamic frequency
and voltage scaling are used in [37] and [38], re-
spectively, to reduce the power consumption of the
processing engines. However, these schemes require
large buffers to store the input packets so that they
can determine or predict the traffic rate. The large
packet buffers may result in additional high power
consumption. Also, these schemes do not consider
the latency for the state transition which can result
in packet loss in case of burst traffic.

7 CONCLUSION

This paper presented a thorough study on data struc-
ture optimizations to minimize the power consump-
tion of SRAM-based IP lookup architectures. Three

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



12

50 100 150
10

−2

10
−1

10
0

10
1

10
2

10
3

K

Mem (Mbytes)

50 100 150
10

2

10
3

10
4

10
5

10
6

10
7

K

P1 (mW)

50 100 150
10

2

10
3

10
4

10
5

10
6

10
7

K

P2 (mW)
rrc00
rrc01
rrc02
rrc03
rrc04
rrc05
rrc07
rrc10
rrc11
rrc12
rrc13
rrc14
rrc15
rrc16

(a) Expanded trie

50 100 150
10

−2

10
−1

10
0

10
1

10
2

10
3

K

Mem (Mbytes)

50 100 150
10

2

10
3

10
4

10
5

10
6

10
7

10
8

K

P1 (mW)

50 100 150
10

2

10
3

10
4

10
5

10
6

10
7

10
8

K

P2 (mW)
rrc00
rrc01
rrc02
rrc03
rrc04
rrc05
rrc07
rrc10
rrc11
rrc12
rrc13
rrc14
rrc15
rrc16

(b) Tree bitmap trie

Fig. 11. IPv6 Results for MBP Architecture

different architectures including the non-pipelined,
the simple pipelined and the memory-balanced
pipelined architectures were considered. To minimize
the worst-case power consumption for each archi-
tecture, a theoretical framework was developed to
determine the optimal strides for constructing multi-
bit tries. Two widely-used multi-bit tries including the
expand trie and the tree bitmap trie were examined.
Simulation using real-life backbone routing tables
including both IPv4 and IPv6 prefix sets showed
that careful selection of strides in building the multi-
bit tries could achieve dramatic reduction in power
consumption. For each architecture and each trie al-
gorithm, the optimal strides were different. Also the
optimal strides to achieve minimum memory were
different from those to achieve minimum power. We
believe our methodology can be applied to other
variants of multi-bit tries and can help designing more
power-efficient SRAM-based IP lookup architectures.
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TABLE 4
Optimal strides for NP architecture with IPv4

Prefix Expanded trie TBM trie
set minMem minP1 minP2 minMem minP1 minP2

rrc00 3 5 4 4 2 2 2 2 1 1 1 1 1 1 2 17 4 3 3 5 17 4 3 3 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
rrc01,13 3 6 4 3 2 2 2 2 1 1 2 1 1 2 17 4 3 8 17 4 3 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
rrc02 5 4 4 3 2 2 2 2 1 1 1 1 1 1 2 17 4 3 4 4 17 4 3 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 4 5 5 5 5 5 3
rrc03 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 9 4 3 2 2 2 2 2 2 2 2 17 4 3 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
rrc04 3 6 4 3 2 2 2 2 2 2 2 2 17 4 3 8 17 4 3 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
rrc05,10-12,14,16 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 17 4 3 8 17 4 3 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
rrc06 3 6 4 3 2 2 2 2 8 16 4 2 2 8 16 4 2 2 8 4 4 4 4 4 4 4 4 4 5 5 5 5 3 5 4 5 5 5 5 3 5
rrc07 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 18 4 3 7 18 4 3 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
rrc08 3 4 3 3 3 2 2 2 2 8 16 5 3 8 16 5 3 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
rrc09 3 5 4 4 2 2 2 2 1 1 1 1 1 1 2 16 4 2 2 4 4 16 4 2 2 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 3 4 5 5 5 5 5 3
rrc15 3 5 4 4 2 2 2 2 1 1 1 1 1 1 2 17 4 3 8 17 4 3 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

TABLE 5
Optimal strides for NP architecture with IPv6

Prefix set Metric Expanded trie TBM trie
min
Mem

2 2 4 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 2

rrc00 min
P1

10 8 6 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 5 5 5 5 4 4 4 4 4
4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

min
P2

10 8 6 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 5 5 5 5 4 4 4 4 4
4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

min
Mem

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

rrc02 min
P1

6 5 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 4 4 5 5 6 6 6 6 6 6 6 6 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

min
P2

6 5 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 4 4 5 5 6 6 6 6 6 6 6 6 7 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

TABLE 6
Optimal strides for SP architecture with IPv4

Prefix Expanded trie TBM trie
set minMem minP1 = P2 minMem minP1 = P2

rrc00 3 5 4 4 2 2 2 2 1 1 1 1 1 1 2 15 2 2 2 1 2 2 3 3 8 8 4 4 3 3 2 3 3 3 6 4 5 3 3 2
rrc01 3 6 4 3 2 2 2 2 1 1 2 1 1 2 15 2 2 2 1 2 2 3 1 2 8 8 4 4 3 3 2 3 3 3 6 4 5 3 3 2
rrc02 5 4 4 3 2 2 2 2 1 1 1 1 1 1 2 12 4 2 2 2 1 1 3 2 3 8 8 4 4 3 3 2 4 4 4 4 4 4 4 4
rrc03 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 14 3 2 2 1 2 2 2 2 2 8 8 4 4 3 3 2 3 3 3 5 5 5 4 4
rrc04 3 6 4 3 2 2 2 2 2 2 2 2 15 2 2 2 1 2 2 4 2 8 8 4 4 3 5 3 3 3 6 4 5 4 4
rrc05 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 15 2 2 2 1 2 2 3 1 2 8 8 4 4 3 3 2 3 3 3 6 4 5 2 4 2
rrc06 3 6 4 3 2 2 2 2 8 14 3 2 2 1 1 1 8 8 8 4 4 8 3 3 3 5 5 5 8
rrc07 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 15 2 2 2 1 2 2 3 1 2 8 8 4 4 2 3 1 2 3 3 3 6 4 5 3 2 1 2
rrc08 3 4 3 3 3 2 2 2 2 8 8 8 2 2 2 2 8 3 6 7 4 4 8 3 3 4 6 4 4 8
rrc09 3 5 4 4 2 2 2 2 1 1 1 1 1 1 2 8 8 4 2 1 1 4 1 1 2 3 6 7 4 4 3 3 2 3 3 4 6 4 4 4 2 2
rrc10 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 14 3 2 2 1 2 3 3 2 8 8 4 4 3 3 2 3 3 3 5 5 5 3 3 2
rrc11 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 15 2 2 2 1 2 1 2 2 3 8 8 4 4 2 3 1 2 3 3 3 6 4 5 3 2 3
rrc12 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 15 2 2 2 1 2 2 2 2 2 8 8 4 4 3 3 2 3 3 3 6 4 5 3 3 2
rrc13 3 6 4 3 2 2 2 2 1 1 2 1 1 2 15 2 2 2 1 2 2 2 2 2 8 8 4 4 2 3 3 3 3 3 6 4 5 4 4
rrc14 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 15 2 2 2 1 2 2 3 1 2 8 8 4 4 3 3 2 3 3 3 6 4 5 3 3 2
rrc15 3 5 4 4 2 2 2 2 1 1 1 1 1 1 2 15 2 2 2 1 2 1 2 2 1 2 8 8 4 4 3 3 2 3 3 3 6 4 5 3 3 2
rrc16 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 15 2 2 2 1 2 1 2 2 3 8 8 4 4 3 3 2 3 3 3 6 4 5 3 3 2
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TABLE 7
Optimal strides for SP architecture with IPv6

Prefix set Metric Expanded trie TBM trie
rrc00 min

Mem
2 2 4 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 6 4 5 6 3 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 4 3 3 3 4 4 3 3 4
4 2

min
P1=P2

4 6 4 7 4 3 2 2 2 2 2 2 2 3 3 1 4 4 4 3 4 4 4 4 2 2 2 2 2 4 4 4 4
4 4 4 4 4 2

3 3 3 4 4 4 4 3 4 3 3 3 3 4 2 3 3 4 4 3 3 3 3 3 3 3 4 4 3 3 3 3 3
3 3 3 3 3 3 2

rrc02 min
Mem

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 4 4 4 4 4 4 6 4 4 4 4 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 4

min
P1=P2

6 6 5 3 2 1 4 3 2 4 4 5 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 8 4 4 4 4 4 4 3 5 3 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

TABLE 8
Optimal strides for MBP architecture with IPv4

Prefix Expanded trie TBM trie
set minMem minP1 minP2 minMem minP1 minP2

rrc00 3 5 4 4 2 2 2 2 1 1 1 1 1 1 2 13 4 3 2 2 2 3 3 13 4 3 2 2 2 3 3 16 4 4 4 4 12 4 4 4 4 4 12 4 4 4 4 4
rrc01 3 6 4 3 2 2 2 2 1 1 2 1 1 2 13 4 3 2 2 2 3 3 13 4 3 2 2 2 3 3 16 4 4 4 4 16 4 4 4 4 16 4 4 4 4
rrc02 5 4 4 3 2 2 2 2 1 1 1 1 1 1 2 16 4 2 2 4 4 16 4 2 2 4 4 16 4 4 4 4 4 4 4 4 4 4 4 4 18 3 3 3 3 2
rrc03,10 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 12 4 2 2 2 2 4 4 12 4 2 2 2 2 4 4 16 4 4 4 4 16 4 4 4 4 16 4 4 4 4
rrc04 3 6 4 3 2 2 2 2 2 2 2 2 12 4 2 2 2 2 5 3 12 4 2 2 2 2 5 3 16 4 4 4 4 16 4 4 4 4 16 4 4 4 4
rrc05 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 12 4 2 2 2 2 3 5 12 4 2 2 2 2 3 5 16 4 4 4 4 16 4 4 4 4 16 4 4 4 4
rrc06 3 6 4 3 2 2 2 2 8 12 4 2 2 2 2 8 12 4 2 2 2 2 8 16 4 4 4 4 16 4 4 4 4 16 4 4 4 4
rrc07,12 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 13 4 3 2 2 2 3 3 13 4 3 2 2 2 3 3 16 4 4 4 4 16 4 4 4 2 2 16 4 4 4 2 2
rrc08 3 4 3 3 3 2 2 2 2 8 3 4 3 3 3 2 2 2 2 8 3 4 3 3 3 2 2 2 2 8 8 4 4 4 4 4 4 8 4 4 4 4 4 4 8 4 4 4 4 4 4
rrc09 3 5 4 4 2 2 2 2 1 1 1 1 1 1 2 3 5 4 4 2 2 2 2 2 1 2 1 2 12 5 3 2 2 4 4 8 4 4 4 4 4 4 1 3 4 4 4 4 4 4 4 16 4 4 4 4
rrc11,14 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 13 4 3 2 2 2 3 3 13 4 3 2 2 2 3 3 16 4 4 4 4 16 4 4 4 4 16 4 4 4 4
rrc13 3 6 4 3 2 2 2 2 1 1 2 1 1 2 13 4 3 2 2 2 3 3 13 4 3 2 2 2 3 3 16 4 4 4 4 12 4 4 4 4 4 12 4 4 4 4 4
rrc15 3 5 4 4 2 2 2 2 1 1 1 1 1 1 2 13 4 3 2 2 2 3 3 13 4 3 2 2 2 3 3 16 4 4 4 4 16 4 4 4 2 2 16 4 4 4 2 2
rrc16 3 6 4 3 2 2 2 2 1 1 1 1 1 1 2 13 4 3 2 2 2 3 3 13 4 3 2 2 2 3 3 16 4 4 4 4 12 4 4 4 4 4 12 4 4 4 4 4

TABLE 9
Optimal strides for MBP architecture with IPv6

Prefix set Metric Expanded trie TBM trie
min
Mem

2 2 4 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 2

rrc00 min
P1

10 8 6 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 5 4 5 4 4 4 4 4 16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

min
P2

10 8 6 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 5 5 5 5 5 5 5 4 5 4 4 4 4 4 16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

min
Mem

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

rrc02 min
P1

2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4

12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

min
P2

2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4

12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
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